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We study the spectrum of appropriate reduced density matrices for a model 
consisting of one quantum particle ("electron") in a classical fluid (of "protons") 
at thermal equilibrium. The quantum and classical particles interact by a short- 
range, attractive potential such that the quantum particle can form "atomic" 
bound states with a single classical particle. We consider two models for the 
classical component: an ideal gas and the "cell model of a fluid." We find that 
when the system is at low density the spectrum of the "electron-proton" pair 
density matrix has, in addition to a continuous part, a discrete part that is 
associated with "atomic" bound states. In the high-density limit the discrete 
eigenvalues disappear in the case of the cell model, indicating the existence of 
pressure ionization or a Mott effect according to a general criterion for charac- 
terizing bound and ionized electron-proton pairs in a plasma proposed recently 
by M. Girardeau. For the ideal gas model, on the other hand, eigenvalues 
remain even at high density. 

KEY WORDS: Bound and ionized states; Mott effect; pressure ionization; 
reduced density matrix; discrete and continuous spectra; functional integrals; 
Birman-Schwinger principle. 

1. I N T R O D U C T I O N  

I t  is genera l ly  ag reed  tha t  an  a p p r o p r i a t e  f u n d a m e n t a l  desc r ip t ion  of  bu lk  

m a c r o s c o p i c  m a t t e r  in e q u i l i b r i u m  is via  the  G i b b s  dens i ty  m a t r i x  

p ~ e x p ( - f l H ) ,  w i th  H the  C o u l o m b  H a m i l t o n i a n  of  nucle i  and  e lec t rons  
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(we are excluding here domains of densities, temperatures, and sizes where 
nuclear, relativistic, and gravitational effects are important). In most situa- 
tions this description is replaced by a much simpler one using an effective 
Hamiltonian Her f where many of the degrees of freedom have been frozen 
out. For  example, to obtain the properties of helium or nitrogen at 
moderate temperatures and pressures it certainly suffices, for all practical 
purposes, to consider the atoms or molecules as the basic units with an 
effective two- or three-body interaction between them. Similarly, for the 
analysis of sodium at 10 3 K we would use an atomic Hamiltonian at low 
densities and a "plasma Hamiltonian" corresponding to Na § ions and elec- 
trons (with no neutral atoms) at high densities where the system forms a 
liquid metal. For  intermediate densities the effective description would 
involve the "degree of ionization" of the system. 

While it is often clear intuitively how to go about finding an 
approximate Her, there are important situations where this is not so. In 
fact, it is not even clear, in a general system, what one means by degree of 
ionization. An important theoretical and practical problem is therefore to 
find methods for obtaining the effective description from the basic 
Hamiltonian in a clear and systematic way. This has been achieved so far 
only for special limits of zero pressure and zero temperature, (2~4) where the 
approximate formula for the degree of ionization at low pressures given by 
the Saha formalism (1) has been given a rigorous foundation. The result 
(established modulo some reasonable assumptions) in the simplest case of 
the electron-proton system is as follows: if one fixes the chemical potential 
# = �89 + #p) below the ground-state energy of a hydrogen atom Eat, then 
in the limit /~ ~ oo the system consists of free electrons and protons (see 
also ref. 5 for a related result). On the other hand, when the chemical 
potential is fixed slightly above Eat , the system will consist of independent 
hydrogen atoms when /? ~ Go. One can obtain "ionization equilibrium 
phases" which consist of mixtures of free electrons, protons, and hydrogen 
atoms by letting the chemical potential (versus temperature) tend to Eat as 

/? ~ co. The degree of ionization then varies smoothly with the slope of the 
chemical potential at Eat , and coincides with the usual Saha formula. (4) 
The techniques of refs. 2 and 3 generalize this picture to arbitrary mixtures 
of electrons and nuclei and also include molecules. 

In the above limits both the particle density and the temperature go 
to zero. One therefore has to go beyond this formalism to gain an under- 
standing of the degree of ionization in systems with finite density. This is 
necessary to describe the transition, continuous or abrupt, such as must 
occur in the sodium system mentioned earlier at pressures intermediate 
between the neutral gas and liquid metal regime. This "pressure-induced 
ionization" occurs when the density increases and the Debye radius of the 
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plasma becomes of the order of the Bohr radius. In such a situation the 
electronic levels of the ions and atoms merge in the continuum and the 
chemical species become unstable (Mott effect). (6) This affects the equation 
of state, the transport properties, and the spectral lines of the system. These 
changes may be gradual or there may be a plasma ionization phase 
transition with the coexistence of two phases with different densities and 
degrees of ionization. (7) 

A fundamental conceptual difficulty in dealing with these problems is 
the lack of an a priori distinction between "free or ionized" and "bound 
or atomic" states in the many-body quantum formalism. It would be 
extremely useful for a quantitative theory of pressure ionization to be able 
to characterize the degree of ionization, at least in a partial way, in terms 
of equilibrium quantities. 

Recently Girardeau (8) made an interesting proposal for identifying 
"ionized" and "atomic" states in terms of the eigenvalues and eigenfunc- 
tions of an appropriate reduced equilibrium density matrix of the system. 
This scheme, which is related to Yang's description of bound pairs in 
superconductivity, considers the pair reduced density matrix p2(x, X ly, Y), 
where x, y and X, Y denote the electron and proton coordinates, respec- 
tively. One can express it as a function of the relative Xre~=X--X, 
Yrr = Y-- Y and center-of-mass coordinates r = (mx + MX)/(m + M), 
s = ( m y + M Y ) / ( m + M ) ,  where m is the electron mass and M is the 
proton mass. In the thermodynamic limit the resulting function will, for 
translation-invariant phases, depend on Xre~, Yre~, and r--s .  We set 
p2(x, X I Y, Y) = Pz(Xr~l, Yre~, r--  s) and define, for a given wave number q, 

pq(Xrel, Yrel) : f dr eiq'rc52(Xrel, Y~I, r) (1.1) 

This object is like a one-particle reduced density matrix describing the 
relative degree of freedom of an electron-proton pair with wavenumber q 
for its center of mass. For a given q one considers the spectrum of this 
density matrix. Girardeau's proposal ,is to associate the discrete part with 
"bound states" and the continuum with "ionized states." In particular, the 
discrete eigenvalues 2v(q) are interpreted as occupation numbers of electron 
"bound states" and their sum is assumed equal to the number of bound 
electrons. Ionization is then associated with the decrease of this number 
caused in part by the disappearance of eigenvalues 2v(q) which merge into 
the continuous part of the spectrum, as the density of the system increases. 
This definition is in agreement with the results of ref. 9 in the limits con- 
sidered there. 

In order to see whether Girardeau's ideas are valid in other cases, we 
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study in this paper the spectral properties of such pair density matrices for 
very simplified models. In particular, we consider the ratio m/M--* O. In 
this limit we have r ~ X, s ~ Y and the center of mass becomes a classical 
variable, whereas the relative degree of freedom remains quantum mechani- 
cal. Consequently, the center-of-mass momentum will, in this limit, be 
distributed according to a Maxwellian and 

pq(Xrel, Yrel)~ e-~Eh~ Iq[2/2(M+m)]~2(Xrel, Yrel, O) (1.2) 

Our problem is thus reduced to the study of the spectrum of the integral 
operator with kernel j0Z(Xrel, Yr~, 0) = pz(X, r] y, r). 

Our models consist of one quantum particle (the q-particle or 
"electron") in thermal equilibrium with a system of classical particles (the 
c-particles or "protons"). We assume that there is an attractive short-range 
force between the q-particles and the c-particles so that an isolated pair can 
bind to form "atomic states." While the presence of only one q-particle is 
not realistic, it greatly simplifies the analysis and we are able to investigate 
low-density as well as high-density regimes of the classical fluid. In fact one 
can formally obtain our models by starting from a more realistic situation 
with a finite density of q-particles and c-particles and letting the density of 
the q-particles tend to zero. The reduced density matrices of our models 
then correspond to the first-order term of an expansion with respect to the 
q-particle density. 

When the density of the c-particles is also small we expect that 

p2(x, r ly, r ) ~  (xkexp( - f lH[ r ] ) [y )  (1.3) 

where HI-r] = Ho + V is the Hamiltonian of the q-particle in the potential V 
of a single c-particle at position r. In this limit the spectrum will consist of 
a continuous part plus some eigenvalues closely related to the exponentials 
of the bound-state energies of an isolated atom. The same behavior is 
expected at high temperature. This argument is not sensitive to the par- 
ticular model of the classical fluid and indeed the results will be similar for 
the two models that will be considered. At high c-particle density, however, 
(1.3) does not hold and the situation can be very different. Let us write the 
pair density matrix as 

p2(x, rly, r)=pp,(x,y)+pEp2(x'rly'r)p p , ( x ,y ) ]  (1.4) 

where p is the density of the classical fluid. In (1.4), pt(x, y) is the reduced 
density matrix of the q-particle. For x = y ,  p l (x ,x)  is the probability 
density to find a q-particle at x, while p2(x, r l x, r)/p is the conditional 
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probability density to find the q-particle at x when one c-particle is fixed 
at position r. Thus, for x = y the term in the bracket can be interpreted as 
the excess electron density at x when a c-particle is fixed at r. 

In view of (1.4) we will consider the perturbation problem for the pair 
of operators (PPl, P2) defined, respectively, by the kernels pp,(x, y) and 
p2(x, r ly, r), r fixed, in close analogy with the usual Schr6dinger problem 
for a pair of Hamiltonians (Ho, Ho + V). 

In a homogeneous system, we will have pl(x, y ) = p l ( x - y ,  0), so Pl 
acts as a convolution operator, or equivalently, as the multiplication in 
Fourier space by the Fourier transform f51(k ) of pl(X, 0). Therefore Pl will 
have an absolutely continuous spectrum, whose spectral density is the 
kinetic energy distribution of the q-particle in the fluid. In fact, in a very 
dilute gas, or when the interaction is very small, ~l(k) is close to the 
Maxwellian (2~flh2/m) -3/2 exp(-fl(h2kZ/2m)). Thus, Pl plays the role of 
the kinetic term, as does H o in the Schr6dinger problem. The second term 
in (1.4) is the kernel of the truncated reduced density matrix P T - P 2 -  PP~. 
We observe that it vanishes if there is no interaction between the q-particle 
and the c-particles, and should tend to zero rapidly as Ix - r ] - -*  oo and 
l y - r l  ~ oo, when the interaction is sufficiently short-ranged (clustering 
property). So PT plays the role of a localized perturbation of p~, as does 
the potential in the Schr6dinger equation. It turns out in the models under 
consideration that PT is a trace class operator (that is actually a stronger 
property than integrable clustering). Then by the basic theorems on pertur- 
bations by trace class operators, P2 and ppl have the same absolutely 
continuous spectrum, so the knowledge of this part of the spectrum of P2 
is reduced to that of p l. 

The question is now to determine under what conditions the pertur- 
bation P r  creates eigenvalues in P2. This will in general depend on the 
structure of the classical fluid. 

We will consider two models for the system of c-particles: an ideal gas 
and a "cell model of a fluid. ''(1~ In the cell model one basically divides 
space into a lattice of cells and allows each cell to be occupied by at most 
one c-particle with some probability distribution. This mimics a short- 
range repulsion between the particles and the variance of the number of 
particles in a given region tends to zero as the density increases. This is in 
contrast to the situation for the ideal gas, where this variance is propor- 
tional to the density and the particle configurations are Poissonian, which 
corresponds on a microscopic scale to large variations in the potential seen 
by the electron. For  this reason, the q-particle excess density takes 
appreciable values, and clusters of c-particles may always bind with the 
q-particle; hence discrete eigenvalues of P2 should persist at high density in 
the ideal gas model. In the cell model, the particle configurations become 
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uniform at high density, and the q-particle will therefore see an essentially 
constant potential. Hence the excess particle density is small as p becomes 
large and only weakly perturbs Pl in (1.4), leading to a disappearance of 
the eigenvalues of P2 at high density. We note that the lattice model of the 
classical fluid where c-particles are forced to sit at fixed lattice sites is in 
many ways similar to the cell model and we expect it to have similar 
behavior. Its lack of translational invariance (which cannot be overcome by 
a simple averaging) makes it, however, more difficult to analyze rigorously. 
We comment on the lattice model at various points throughout the paper. 

The main purpose of this paper is to establish the above-mentioned 
properties of the two models. The mathematical methods are the same 
as those used in the Schr6dinger theory (perturbation of eigenvalues, 
equivalence of spectra, bounds on the number of eigenvalues), but we 
have in addition to control the spectral properties in terms of the thermo- 
dynamic parameters p and/~. It is worth noting that our results are for three- 
dimensional space. The situation may be different in lower dimensions. 

The disappearance of eigenvalues in the cell model can be viewed as 
an elementary prototype of a Mort transition in a partially ionized gas. 
Usually, a Mott transition is observed when some approximate two-body 
effective Hamiltonian Herr( p, fl) loses its bound states as p varies. (6) Here, 
since P2 is positive, an effective two-body Hamiltonian could be defined by 
102 = p exp[ - f lHe f f (p ,  fl)]: the spectrum of P2 is simply the exponential of 
that of Herf(P, ~). In this paper we do not attempt an approximate deriva- 
tion of Herr(p, fl), but rather study the spectral properties of P2 without 
further approximation. 

We note that the qualitative discussion presented here in the 
framework of simple models seems to be of general nature. The basic 
scheme (1.4) for the study of P2 as a perturbation of Pl should also work 
in a fully quantum mechanical many-body system. Clearly, the spectral 
properties of P2 are intimately linked to the nature of the particle fluctua- 
tions: a Mort or a plasma ionization phase transition should correspond to 
a drastic reduction of these fluctuations in the system. 

We are of course aware that this approach to the problem of bound 
states in a dense system is not the only one (see the discussion of this point 
in ref. 11). In particular, the definition of an effective Hamiltonian from 
purely static quantities such as the reduced density matrices may not be 
adapted to the study of line broadening or transport properties. It has, 
however, the virtue of leading to a well-posed spectral problem which can 
be treated by the mathematical tools developed in connection with the 
theory of Schr6dinger operators. 

We finally observe that for the specific models treated in this paper we 
are concerned with the spectral properties of an annealed problem: the 
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q-particle is in thermal equilibrium with the c-particle. These spectral 
properties bear no evident relationship with those of the corresponding 
quenched problem, where one studies the spectral properties of the 
Hamiltonian of the q-particle for frozen configurations of c-particles. For 
instance, in one dimension, it is known that the spectrum is discrete for 
almost all configurations of c-particles, ~2) whereas p~ will still have a con- 
tinuous spectrum. Also, the eigenfunctions belonging to the possible eigen- 
values of P2 have no obvious link to the localized states of random 
Schr6dinger operators (here an attractive potential is needed while 
localization can occur independently of the sign of the potential). Clearly 
a better understanding of the connections between these two types of 
spectral problem would be of interest. 

In Section 2, we first formulate the two models and then state the main 
results of the paper. The general spectral properties of pl and P2 are 
established in Section 3. Section 4 is devoted to the low-density and high- 
temperature regimes, while the high-density limit is studied in Section 5. 
The appendices contain more technical material. 

2. DESCRIPTION OF M O D E L S  A N D  S T A T E M E N T  OF RESULTS 

Given a configuration r l -- . r~ in R 3 of classical particles, the 
Hamiltonian of the quantum particle is 

1 
H [ r ~ . . . r , ] =  - ~ A x +  ~ V ( x - r i )  (2.1) 

i - - I  

where Ax is the Laplacian (we set h = m = l )  and the potential V(x) 
satisfies V(x)= V( -x ) ,  V(x)~<0, and is six times continuously differen- 
tiable with 

M 
10~, . . . .  kV(x)J ~<(l+Fxl2)./2, k = 0 ,  1 ..... 6 (2 .2 )  

and rt/> 6. It follows from (2.2) that the one-particle Hamiltonian HI-r] 
has at most a finite number of bound states, ~b 0, ~b~ ..... ~bg, with energies 
Eo ~< E~ ~< ... Eg ~< 0. (16) We assume that this set is not empty. 

For a bounded region A c R 3, the reduced density matrix of the 
quantum particle is defined by the kernel 

pl,A(x, y) =-:-- ~ dr 1 .. .  dr, G,(rl ... r,) e-/~HA[rt . . . . .  ](X,  y) 
~ A  n = 0  

(2.3) 

where G,,(rl ... rn) describes the probability density of classical particles in 
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A in the absence of the quantum particle and HAIr 1 " ' r n ]  denotes the 
Hamiltonian (2.1) with Dirichlet boundary conditions on ~?A. In (2.3), ZA 
is the partition function obtained by taking the trace of the numerator. 
When one classical particle is fixed at position r, the reduced density matrix 
of the pair of particles is 

Pz.~(x, y l r )  = z  ~ ZnfA f~ _ A ~ = 0 ~  d r i . . ,  dr, Gn+l(r, r l - . . rn )  

x e-flHA[r'rl . . . . .  ](X, y) (2.4) 

In the simplest case where the classical fluid is just an ideal gas the 
function G , ( r l . . .  r,) is identically equal to one. 

In the case of the cell model G, is constructed as follows. We consider 
the lattice L =  { j a l j e Z  3, a > 0 }  and call A the unit cell, centered at the 
origin, of volume IAI = a 3. The characteristic function of A is Zz. To a con- 
figuration r l - . . r ,  of n classical particles we associate the weight function 

1 r (I ~ Zz( ,-jia- z) (2.5) G"(rl'"r")=~Al fAdzilei2~ ej, i = l  

This weight function selects, for each z, configurations of n particles with 
at most one particle in a cell A + ja + z. Thus this function mimics a short- 
range repulsion between the particles. The extra integral over the transla- 
tions z e A of the lattice L will restore the translation invariance in the ther- 
modynamic limit. As a consequence of the uniform distribution in every 
cell G,(ri ..... r , ) =  Gi ( r l )G ,  l(r2 ..... r,) for [ r i - r , I  >2a,  i = 2  ..... n and the 
cell model classical fluid has strong cluster properties at all densities. 

If we replace (1/IAI) Zz by the Dirac measure and remove the r integral 
in (2.5), we obtain a usual lattice model for the classical system. However, 
the full translation invariance (in 113) turns out to be helpful for our 
purposes and in this respect the cell model is simpler than the lattice model. 

It is possible to show that ]AI pl,A(x, Y) and ]A] p2,A(X, ylr)  have well- 
defined thermodynamic limits for all the models. 3 To compute them, we 
use a functional integral representation of the kernels, (13) 

exp( - f l H  A Jr1. . .  r , ]  )(x, y) - exp[ - (x - y)2/2fl] f D~ ZA(C~xy) 

1 i=1 

3 We introduce a volume factor [At to take into account that the density of the single 
quantum particle is [A]-L 
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where 

~xy(S) = x + s(y - x) + ~ ~(s) 

and ~ is the Gaussian Brownian bridge process ~(s)= (~l(s), ~2(s), ~3(s)), 
0~<s~<l, %(0)=%(1)=0, with zero mean and covariance s(1-t)J,j 
(i, j =  1, 2, 3) for s ~< t. ZA(~xy) represents the characteristic function of the 
paths ~xy(S) that stay in A for all s, 0 ~< s ~< 1. To obtain the thermodynamic 
limit of PI,A and P2.A it is convenient to divide the numerator and the 
denominator of (2.3) and (2.4) by the partition function of the classical 
system without the quantum particle. We give the explicit formulas only for 
the cell model and indicate the necessary modifications for the ideal gas 
and lattice models. We get for the cell model 

p,(x, y )=l im IAI Pl ,A(  X, y) 
A 

1 1 e x p [ - ( x -  y)2/2fl] JI'D~ ~ 
N(p, fl) (2rCfi) 3/2 

p2(x, yl0)---lim [AI P2,A(X, yl0) 
A 

p exp[ --(x - y)2/2fi] 
N(p, fi) (2/tfl) 3/2 

xf DC~A~f dzexp[j~oCi,,(x,Y,~' ] 

J t2. , 
where 

x exp [ ~  C,,,(x, x, c~,J (2.9, 

Ci,,(x,Y,~'=ln(l+P f dr 

x{exp[-flf~dsV(~=y(s)-r-ja-z)l-1}) (2.10) 
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and the parameter 

z 1 
P = I + z I A I  

is the density of the classical fluid, z/(1 + z) being the mean occupation 
number of one cell. In Appendix A we derive the formulas (2.7)-(2.10) and 
check that the reduced density matrices are translation invariant, i.e., 
pl(X +Xo, y+x0)=Pl (X , y) and pz(X+ X0, y + x o l 0 ) = p z ( x ,  y[ -Xo). This 
implies in particular that the integral operators with kernels p2(x, Y L r) are, 
for different values of r, unitarily equivalent. Since we will be concerned 
with the spectral properties, it is sufficient to study p2(x, y l0), as defined 
by (2.8). 

From (2.7) and (2.8) we can form the truncated reduced density 
matrix 

pT(X, y ) =  p2(X, y] O)--pp~(x, y) 

p exp [ - (x - y)2/2fl] f 1 
-N(p, fl) ( -~3~ J Do~ IA ~ 

x ;z dz exp [ ~  Cj,~(x, Y, cQ ] 

e x p [ - f l  ~ ds V(cqy(S))] 
x l + p f z d  r { e x ~ - ~ _ ~ s s ~ ( ~ r 2 _ j a _ z ) ] _ l  } 

which is also translation invariant. 

(2.11) 

For this model the density matrices are again translation invariant and 
p = z. In the corresponding reduced density matrix, the large bracket in 
(2.11) has to be replaced by 

{exp [-fl f] ds V(~xy(S))l-1 } (2.13) 

To obtain the analogous formulas for the lattice model we just have to 

Other Models. In the case of the ideal gas model the formulas 
for the reduced density matrices are the same as (2.7)-(2.8) with 
Y~j Cj.~(x, y, cr replaced by the functional pF(y - x, ~), where 
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replace (1/IA])Z~ by the Dirac measure. Then we get (2.7) and (2.8) with 
Cj,~(x, y, e) replaced by 

Gi(x,y, cQ=ln ( l+ l@z{eXpI - f l f j d sV(c~xy ( s ) - j a ) ] - l } )  (2.14) 

Here the parameter z/(1 +z) represents the occupation probability of a 
lattice site and the density matrices have the periodicity of the lattice. 

Following the ideas presented in the Introduction, we have studied the 
spectrum of the pair reduced density matrix in the cases of the ideal gas 
and cell models. For the lattice model the lack of full translation invariance 
makes this study more difficult and we only present some comments at the 
end of this section. Averaging the position of the lattice over a unit cell 
makes the one-particle density matrix translation invariant but destroys the 
cluster property of the pair correlations. 

The integral operator with kernel p2(x, Y l 0) wilt be denoted by P2. It 
can be considered as an integral bounded self-adjoint operator from L2(R 3) 
to L2(R 3) (see the beginning of Section 3). Our main results on the spectra 
of P2 for the ideal gas and cell models in three dimensions are summarized 
below. 

I. General Properties. For any p, fl the spectrum of /)2 has an 
absolutely continuous part spanning the interval [0, X], with 2"= 
P S dx pl(x, 0). If the spectrum is not empty outside this interval, then it 
consists of a finite number of isolated eigenvalues all greater than ~. 

II. Low-Density and High-Temperature Limits. For a given /Y 
there exist densities p small enough (depending on fl) such that the discrete 
part of the spectrum is not empty and there exist eigenvalues 2v that are 
related to the single-atom energy levels Ev by 

lim --=e2V ~e~ (2.15) 
p ~ 0  

The edge X of the continuous spectrum is asymptotic to p(2rcfl) 3/2 for 
p--* 0. 

There exist a /~, independent of fl, such that for p </~ and fl small 
enough the discrete part of the spectrum is not empty. All eigenvalues are 
asymptotic to Z as fl --* 0, i.e., they merge in the continuous spectrum. The 
edge of the continuous spectrum is asymptotic to p(2/~fl) 3/2 for fl--,0. 
Moreover, in the case of the ideal gas model we have/5 = oo and 

(~bv' P2~b~') e -pev(l+~ (2.16) 
_r 
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III. High-Densi ty  Limit. In the ideal gas model, for fixed/~ and for 
p large enough the discrete part of the spectrum is not empty. Remarkably 
enough, this remains true for an arbitrarily weak attractive potential, i.e., 
even when the one-particle Hamiltonian H [ r ]  has no bound states. 
Moreover, in this limit X =  O(pl/4). 

In the case of the cell model for fixed /3, [A] fixed small enough, and 
z large enough (depending on/~ and [A I), the discrete part of the spectrum 
is empty. Moreover, in this limit S = 0(p3/4). 

The results I-II  will be shown rigorously. The derivation of III is not 
entirely rigorous insofar as it involves the formal computation of some 
functional integrals by the Laplace method. According to the above results, 
it is likely that in the ideal gas model the discrete part of the spectrum of 
P2 is always nonempty. At low density or high temperature P2 has some 
eigenvalues that are related to the energy levels of the isolated atom. 
However, we cannot exclude the existence of other eigenvalues regardless 
of density (and temperature). As already noted in the Introduction, we 
believe the existence of eigenvalues at high density for the ideal gas model 
to be a consequence of large density fluctuations (the variance of the par- 
ticle number, in any region, divided by the region's volume being equal to 
p). Consequently, the quantum particle may form bound states with 
clusters of classical particles that happen to be near the same point, thus 
forming a trap for the quantum particle. This also explains why there exists 
eigenvalues even when the potential is so weak that the one-particle 
Hamiltonian H [ r ]  does not have bound states. In a situation where the 
density of classical particles is uniform with little fluctuations we expect 
that the quantum particle cannot bind and the spectrum of the pair 
reduced density matrix will be entirely continuous. This is precisely the case 
for a classical fluid modeled by the cell model as we increase the density. 

Ionization Equilibrium Limit. Another limit of interest is the "ioniza- 
tion equilibrium limit. ''(4'9) This case is obtained by setting the chemical 
potential #(/~) = Eo + r 1 + 0(/~ 1), a ~ R, z(2~/~) 3/2 = exp(/3#). Then it is 
possible to show in the case of the cell model that if [A[ (the size of the 
cells) is large enough, 

lim p2(x, y]0) = (1 - ~) ~bo(X ) ~bo(y) (2.17) 
,8~co 

with 

= lim [-1 + z(27rfl) 3/2 e ~E0] -1 = (1 + e~ -1 
/3~oo 

(2.18) 

If we fix /~<Eo, then (2.17) holds with e =  1, which corresponds to 
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= - o e .  On the other hand, one can show that if/z is fixed slightly above 
Eo, then (2.17) holds with e =  0. Formula (2.18) corresponds to the Saha 
formula for the degree of ionization (see ref. 9 for a discussion of this 
point). We note that Girardeau's definition for the fraction of bound 
particles (s) is consistent with (2.17). To obtain (2.17), it is crucial that the 
following operator inequality holds: 

H [ r  1 ..... rn] >~ - K n ,  K <  lEo], n >~ 2 (2.19) 

For  the cell model, (2.19) is valid as long as IAI is large enough, but it is 
not for the ideal gas model. Equations (2.17)-(2.19) and their proofs are 
similar to those of the model considered in ref. 9 and we will not discuss 
them in what follows. 

Outline of the Proofs. As described in the Introduction, our analysis 
is based on treating the integral operator p~ with kernel pl(x, y) [-see (2.7)] 
as our unperturbed "reference system" and P T as a "perturbation." The 
operator pj is bounded and self-adjoint from L2(R 3) to L2(R 3) (see 
beginning of Section 3). We also consider the Fourier transform 

/~l(k) = f dx e ik'xpl(X, 0) (2.20) 

The following propositions, which we prove in Section 3, will play an 
important role. 

Proposition 1. For any p and fl, Pl has an absolutely continuous 
spectrum given by [0,/~1(0)]. 

Proposition 2. For  any p and fl, the truncated reduced density 
matrix p r =  P 2 - P P l  is a trace class operator. 

It follows from standard theorems on the stability of absolutely 
continuous spectra (14) that 

,02 = PPl  + PT (2.21) 

has an absolutely continuous part in its spectrum, covering the interval 
[0, pfi~(0)]. Moreover, by the Weyl-von Neumann theorem (~4) this inter- 
val coincides with the essential spectrum. Thus, outside this interval the 
spectrum can consist only of isolated eigenvalues with finite multiplicities. 4 
Moreover, these eigenvalues are all greater than Z '=  p~t(0), since P2 is a 

4 It cannot be excluded on general grounds that P2 has also a singular continuous part in 
[0, p/~t(0)]. We will assume throughout the paper that this does not occur. 
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positive operator (the thermodynamic limit of positive operators). Thus, 
what remains to be proven for result I is that the number of eigenvalues 
is finite. This will be achieved by the Birman-Schwinger technique in 
Section 3. Let us remark at this point that since P2 is a bounded operator, 
it could have an infinity of eigenvalues only if X is an accumulation point 
of the discrete spectrum. 

The low-density limit is the easiest part and is treated in Section 4. In 
this case the properties of the discrete spectrum can easily be derived by 
perturbation theory around p = 0. 

We can construct a variational principle which will be useful in some 
cases to prove the existence of eigenvalues. In view of the properties of the 
spectrum that we outlined before we know that the discrete part is not 
empty if we can find a function q~LZ(R 3) such that []~bil2= 1 and 

(r p2O) 
~V - -  > 1 (2.22) 

This will be used for the investigation of the high-temperature limit in 
Section 4. 

The high-density limit is the subject of Section 5. For  the case of the 
ideal gas we use again the variational principle (2.22). The absence of a 
discrete spectrum for the cell model is proven with the aid of a Birman- 
Schwinger technique. 

Latt ice Mode l .  Before closing this section, we comment on the lat- 
tice model defined by (2.14). For  all z > 0 ,  Pl is only invariant under the 
discrete lattice translations, so it can have an absolutely continuous band 
spectrum with a number of gaps. It can be checked that PT satisfies 
Proposition 2, hence P2 will have the same band spectrum as PPl. 

As far as the existence of eigenvalues is concerned, we observe that 
there is a limiting situation, i.e., the full occupancy of the lattice 
z/(1 + z ) =  1, where P2 has certainly no eigenvalues. Indeed, in the limit of 
full occupancy when z/(1 + z ) =  1, P2 reduces to ppl  ~ exp(--flOper) , where 
Hpo r = --�89 x + ~ j  V ( x - j a )  is the Hamiltonian of an electron in a perfectly 
periodic crystal. Thus P2 has a continuous band spectrum and no discrete 
part. On the other hand, for a sufficiently small occupation number 
z/(1 + z) of the lattice, one can reproduce the analysis of Section 4 to show 
that there exist at least eigenvalues 2v ~ exp(-f iE~)  above the supremum Z 
of the band spectrum. 

Therefore as the occupancy number increases to 1 it will reach a value 
where all eigenvalues above S disappear [certainly at z/(1 + z ) =  1, but 
presumably in some range of values close to 1 ]. 
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The main difference with the cell model is that this will occur irrespec- 
tive of the lattice spacing a, which we can choose as large as we wish. The 
disappearance of the discrete spectrum in the lattice model is thus a result 
of quantum mechanical coherence due to the strict periodicity of the lattice. 
This coherence due to the absence of fluctuations remains even when we 
send all the classical particles far apart by letting a --+ oo. So the cell model 
and the lattice model share the common feature that the disappearance of 
eigenvalues is caused by a reduction of the particle fluctuations. 

3. GENERAL PROPERTIES OF THE 
REDUCED DENSITY M A T R I C E S  

It follows from the definitions (2.3) and (2.4) that the finite-volume 
kernels Pl,A and Pz, A are symmetric and positive definite. These properties 
are preserved in the thermodynamic limit. 

We now derive some useful pointwise estimates on the infinite volume 
kernels (2.7), (2.8), and (2.11) for the cell model. 

Using ln(1 + x ) ~ x  for x~>0 in (2.10), we have 

y, ~1 Cj~,x ~,.~;dr{expE ~ 0~V,~x.,~, r ja ~1 1 } (3.1) 

Applying the Jensen inequality to the integral over s in the right-hand side 
of (3.1) then gives 

Ci.~(x, y, a) ~< p f dr (e /~V(r) __ 1 ) = pl)(fl) 
J 

Thus from (2.7) 

e pv(B) e -  (x y)2/2fl 

Pl(X, Y) <~ N(p, fl) (2rcfl) 3/2 

Since the potential 
similar bound for pz(X, Y l 0) 

(3.2) 

(3.3) 

V is assumed to be bounded, we obtain from (2.8) a 

epV(,~)e~SUp Ivy e (x y)2/2,8 

pa(X, y lO)~< N(p, fl) (2rcfi) 3/2 (3.4) 

The inequality (3.4) implies that 

~, m.x [sup/.,,, ,~,., ,,, supf,,x ,~,x ,, ]~  ~ .  (3.5) 

822/67/5-6-6 
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where p(x, y) stands for p l (x ,y)  or p2(x, y[0). We conclude/14) that the 
two symmetric kernels (2.7) and (2.8) represent bounded self-adjoint 
operators on Lz(R3). 

Since V is negative, the denominator in the bracket in (2.11) is larger 
than one. Using e x - 1 ~< xe ~, x >>. O, and (2.2), we find that this bracket is 
less than 

/~e ~sup IVlfo ds I V(~x,(s))l <~fle~SUplVlM ds [1 + IC~xr(S)12] -~/2 (3.6) 

and then, from (3.2), we have for the kernel of the truncated density matrix 

- (x - y)2/23 1 
[PT( x, Y)I ~< C(p, ~) e(2~/~)3/2 f De oo f ds [-1 + lex,(s)121-"/2 (3.7) 

where C(p, ~) depends only on density and temperature. The estimates 
(3.3), (3.4), and (3.7) are also true for the ideal gas model. 

For the cell model, we can obtain a better estimate on pT(X, y) for 
small a if we use the condition (2.2) on the derivative of the potential. By 
the truncated Taylor expansion, this condition implies that for r, ~ e A 

1 1 

fo as EV(exy(S)- r - " [ ) -  V(exy(S)) ] ~aC;o as [-1 + lexy(S)12] -"/2 (3.8) 

with C independent of a for a small Using again that V is negative, (3.6), 
and (3.8), we obtain that the bracket in (2.11) is majorized by 

1--1- {exp I - f l  f] ds V(exy(S))]- l + z 

z 1 ~ d r  
+ l + z l 3 l  

x e x p [ - f l f ] d s V ( e x y ( S ) - r - v ) ] - e x p [ - f l f ]  

1 
~< A/~[exp(/~ sup IV[ )](z -1 + a) fods [1 + [exy(s)[ a] ,/2 

ds V(ex,(S))] 

(3.9) 

with A constant. 
Thus, contrary to the ideal gas model [-see (2.13)], the bracket in 

(2.11 ) is vanishingly small at high density (i.e., z large and a small enough). 
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Proof of Proposition 1. Because of translation invariance we have 
for any ~b e L2(R 3) 

(px~b)(x) = f dy pl(X - -  y, 0) ~b(y) (3.10) 

Note that by (3.3), p~(x, 0) is in L2(R3)~LI(R3),  so Pl acts as a multi- 
plication operator in the Fourier representation 

(/9 l~)(k) = fi~(k) ~(k) (3.11) 

Because of the bound (3.3), /91(k) is an entire function of the component 
of k, so it cannot be constant on open sets of R 3. Thus pl has an absolutely 
continuous spectrum given by the image of the function /5~(k). Since 
/5~(k)/> 0 and limlk I ~ 0o/~(k) = 0, the spectrum is [0, supk/51(k)]. Finally, 
since pl(x, 0)/>0 we have 

r ~< sup/~l(k) ~< f d• ]pl(x, O)l = f dx pl(x, O) =/~l(O ) (3.12) 
k 

This completes the proof of Proposition 1. 

Remark. The function ~l(k) attains its maximum only for k = 0 .  
Indeed, we see from (2.7) that pl(X, 0 ) = p l ( - x ,  0) and that pl(x, 0) is 
strictly positive for finite x, 

1 e (x)2/2fl 

pl(x, 0)/> N(p, ~) (2~zfl) 3 / ~  

since V(x)< 0. Thus, for any k # 0, the integrand of 

jol(k) = f dx cos(k  ~ x)/Ol(X , 0) (3.13) 

is strictly less than pl(x, 0) on some open set not containing the points 
k .  x ~ 2rcZ. Hence/~l(k) < ~1(0), k # 0. 

Proof of Proposition 2. To prove that PT belongs to the trace class, 
it is sufficient to represent it as a product of two Hilbert-Schmidt 
operators. (14) Let h(x) = 1 for Ixl ~< 1 and h (x )=  [xl (3/2+~) for Ixl >/1, with 
E > 0. We denote by h the multiplication operator by this function. One can 
easily check that the operator 

K = ( - A + I ) - l h  (3.14) 
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is Hilbert-Schmidt. Since pr=K(K-lpr), it is sufficient to prove that 
(K lpr  ) is Hilbert-Schmidt, i.e., 

f dx f dy Ih(x)l-2 I ( - A x +  1) pw(x, y)t z< oo (3.15) 

With the explicit formula (2.11) for pr(x, y) we check in Appendix B that 
(3.15) holds. 

For the proof of I we will need the following result. 

Lemma 3.1. Let IPTI = [ - ( p T ) 2 ]  1/2' The kernel of this operator 
satisfies 

J1 ~ f dx f dy [(IPrl)(x, y)[ < (3.16) 

J2=fdxfdy[fdzl(IPrl)(x,z)l '(IPrt)(z, Y)I] <oo (3.17) 

Here the nontrivial point is that we have to deal with the kernel of I Pr] 
instead of Pr. 

ProoL From Schwartz's inequality 

J2~fdxfd,[fdg](lPTl)(x,z)]2]l/2[fdzl(llOTl)(z,Y)'211/2 
(3.18) 

We introduce again the same function h(x) as in the proof of Proposition 2. 
By (3.18) and the Schwartz inequality 

(3.19) 

We recall that the multiplication operator by the function h(x) is denoted 
simply by h. The last bracket in (3.19) is the square of the Hilbert-Schmidt 
norm of h -1 ]Pr]. Introducing the polar decomposition of the self-adjoint 
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operator PT (i.e., IpTl=prU, U unitary) we notice Ilh -~ IpT[[12= 
Ilh ~PTIIZ, and therefore 

(3.20) 

Now with the help of the estimate (3.7) it is possible to check that J2 < 0(3 
[for e small enough in the function h(x)]. 

For J1 we write 

J1 = f dx f dy h(x) h(y)Eh(x) h(y)] 1 I(IP~l)(x, Y)I 

<~Ifdxlh(x)lz]{fdxfdyEh(x)h(y)]-21(lPrl)(x,y)12}~/2 

<~[fdxlh,x)12]{fdxfdy[h(x)]-4[(Iprl)(x,y)]2} ~/2 (3.21) 

The first inequality is Schwartz and for the second we use g(1/2)~< 
�89 + g(1)] for the convex function of t, 

g(t)={f dx f dy[h(x)]-4t[h(y)]-4(~-')l(IPrl)(x,y)[2 } (3.22) 

The bound (3.21) involves the Hilbert-Schmidt norm of h -2 ]PT[, which is 
equal to that of h-2pr. Thus, in the last line of (3.21) we can replace ]Pr[ 
by Pr  and explicitly show that the bound is finite as for (3.20) (for e small 
enough). Let us just remark that this time the fourth power of h(x) 
[instead of the square in (3.20)] appears, so we really need that the 
potential V is O(]xl-"), r/>~6, at infinity. This completes the proof of 
Lemma 3.1. 

Let N be the number of eigenvalues of/92 that are greater than Z. 
According to the discussion after Propositions 1 and 2, the proof of I will 
be complete if we show N <  ~ .  For this we introduce N', the number of 
eigenvalues of PPl + [PrJ. The following inequality holds: 

N<,N' (3.23) 

This is a special case of the following result. 

Lemma 3.2. Let A, B be setf-adjoint operators such that A ~< B. Let 
a be the supremum of the essential spectrum of B. Let N(A, a) and N(B, a) 
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be the number of bound states of A and B above or. Then N(A, a)<~ 
N(B, a). 

This Lemma is stated in ref. 15, p. 54, and can easily be proven by the 
minmax principle. 

If we set A = p 2 ,  B=ppI+  IPr], we have A<~B and a = S  as a conse- 
quence of Propositions 1 and 2. Thus we can apply Lemma 3.2 to our 
choice of A and B to obtain (3.23). 

Proof of I Completed. For 2 > Z we define 

K(2) = IPrl ,/2 ( 2 - P P l ) - '  IPT[ ,/2 (3.24) 

From Proposition 2 we know that IPrll/2 is Hilbert-Schmidt. For a given 
2 > S ,  ( 2 - p p l )  1 is bounded, so K(2) is also Hilbert Schmidt (even trace 
class). Consequently we can apply the Birman-Schwinger principle in the 
form (16) (see also ref. 17) 

N'~< lim Tr K(2) K(2) + (3.25) 
2 ~ Z  

In (3.25) the limit may be finite or infinite. We will show that it is in fact 
finite and therefore, using (3.23), N <  oo. We make the following decom- 
position: 

2 
Tr K,2, K,2, + ( )  ( )  = T r  Iprl S()d ]PTI S ( 2 ) + ~ T r  [Prl S ( 2 ) I P r l -  Tr IPrl 2 

(3.26) 

where 

S(2)= ( 2 - p p 1 ) - ' - 2  - l = p p l ( 2 - p p l )  i (3.27) 

Obviously the last term on the right-hand side of (3.26) has a finite limit 
when 2 tends to Z'. Let us first control the limit of the second term. Since 
IPr[ and S(2)IPT[ are Hilbert-Sehmidt, the trace can be represented as 
follows: 

Tr IPT[ S(2)IP~l = f dx f dy (Ip~l)(x, y)(S(2)Ip~l)(y, x) (3.28) 

From the proof of Proposition 1 we see that 

(S(2))(x, y) = f  dk eik'(x--y) p~l(k) 
2 -- p/~,(k) 

(3.29) 
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The integral (3.29) is absolutely convergent for 2 > X = p ~ ( 0 ) ,  since 
(i) ~l(k)~< ~(0), and (ii)ill(k) has an integrable decay because pl(x, 0) has 
integrable derivatives as a consequence of the smoothness of the potential 
(2.2). From (3.28) and (3.29) 

ITr IPT[ S(2)IPT[I 

= f d x f d y f d z f d k ( I p ~ l ) ( x , y )  eik.(y--z) P/~I(k) 
2 -  p/~,(k) (IpTl)(z, x) 

<~{fdzfdyEfdxl([PT})(z,x)(IPTI)(x,Y)l]t 

x l f d k  P/31(k) 7 (3.30) 
2 - pt~,(k)J 

We know from Lemma 3.1 that the integrals in the large braces of the 
right-hand side of (3.30) are finite. This also justifies the interchange of 
integrals. Let us check that 

~ ! imfdk  p / 5 , ( k ) = i d k  /5,(k) < ~  (3.31) 
�9 )o- p,51(k) /5(0) - / )x(k)  

We know that the integrand on the right-hand side of (3.27) has a unique 
singularity at k = 0 (by the remark after the proof of Proposition 1). For 
the two models pl(x, 0 ) = p ~ ( - x ,  0) and p~(x, 0)>~0, so 

f dx xpl(x, O) = O, 0 ~< f dx Ixl2 p~(x, O) ~< oo (3.32) 

Thus the singularity at k = 0 is O(Ik1-2), an integrable one in three dimen- 
sions. Since ~l(k) has an integrable decay at infinity, (3.31) follows by 
monotone convergence. 

It remains to control the limit of the first term on the right-hand side 
of (3.26). We have again a product of Hilber~Schmidt operators, so we 
can represent the trace as 

Tr IPT] S(A) IPTI s(~t) = f dx f dy (IPT[ S(Z))(x, Y)([PTI S(2))(y, x) (3.33) 
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With (3.29) we get 

Lebowitz et  al,  

ITr [prl S().)IPTI 8(2)1 

-- f dx f dy f dz f dk f d z ' f d k '  ([pr[)(x, z) 

• elk .(z y) P#I(k) 
2--  p/~,(k) 

(tpTt)(y,z,)eik'-(z'--x) P#I(k ')  
;t -- pp(k ')  

2 p/~l(k) ]2 (3.34) 

The first bracket in the last line of (3,34) is finite because of Lemma 3.1. 
The limit of the second as 2-* Z" is the same as (3.31). This completes the 
proof of I. 

4. THE L O W - D E N S I T Y  A N D  H I G H - T E M P E R A T U R E  L IMITS 

In this section we will prove the results in I! for the cell model. The 
arguments for the ideal gas model are similar. Let us begin with the low- 
density limit. From I we know that the edge of the continuous spectrum is 

2; = p f dx pl(x,  0) 

f dx e x p [ -  (x)2/2/~] 
N(p, ~) J (2g/Y) 3/2 

Using the estimate (3.2), it is easy to deduce that l imp~oN(p, /~)=  
(2rq3) -3/2 and limp__,o[S/p(27r~) 3/2] = 1 by dominated convergence. To 
prove that the discrete part of the spectrum is not empty, we make the 
following decomposition: 

P [e-pHI0] + R]  (4.2) P2 -- N(p, fl) 
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where R is an operator with kernel 

R(x, y) - exp [ -(-~-~3~(x - y)2/2fl] f D~ ]~--~1 fA dr 

1 } ,43  

We estimate the operator norm of R by (14) 

IIRH~<Max Isup f dy jR(x, y,], sup f dx ]R(x, y)]] 

~< e ~ sup V(epV(,) _ 1 ) (4.4) 

where we have used (3.2). Thus ]IRI[ = O(p). So by the regular perturbation 
theory, for fl fixed and p small enough, P2 has isolated eigenvalues 2v 
satisfying (2.15 ). 

For the high-temperature limit we cannot use the same method 
because [as can be seen from (4.4) and v(fl) = O(fl)] the perturbation term 
in (4.2) is O(fl), whereas the spacing between the eigenvalues of 
exp(flH[0]) is also O(fl). 

We first look at the edge of the continuous spectrum as fl ~ 0 and 
prove that all possible eigenvalues must merge in the continuous spectrum 
in this limit. For this to be true it is sufficient to have 

lim II II,,p2,,=l (4.5) 
~ o  Z: 

We have 

X~<]Ip2H~< Max ISUxP f dy [p2(x, y)[, sup f dx [p2(x, y)]] (4.6) 

The operator P2 is self-adjoint, so [(p2)(x, Y)I is symmetric; thus, 

1 ~< i[~_~1___/[o~ ~< supx [j dy IP2(X, Y)I (4.7) 
X 2 . ,  
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We have from (2.8), after the change of variables y ~ x/fl Y + x, 

]" dy Ip~(x, Y)I 
Z 

={fdyexp(-Y---f) fD~f drexplj~oCi,~(x,x/-fiY+X,~) ] 

x exp [ -  fl fs ds V(x + x/-fi Y + x/-fi ~(s) ) l} 

x {f  dyexp ( -  ~ )  f D~ f d~ 

Iv ]}i 
x exp Cj,~(x, , , ~  y + x, e) (4.8) 

From (3.2) it follows that 

ICj,~(x, y, ~)l ~ fl e€ Ivl f dr I V(r)l (4.9) 
J 

showing that the integrands in the numerator and the denominator of (4.8) 
are bounded by and tend to e y2/2 uniformly with respect to all the 
arguments as fl ~ 0. Hence the ratio (4.8) tends to 1 uniformly with respect 
to x by dominated convergence. Thus we have (4.5). One can also prove, 
using (4.1) and (4.9), that limB~o[Z/p(2~fl) 3/2] = 1 by dominated con- 
vergence. 

To prove the existence of eigenvalues in the high-temperature limit we 
use the variational principle (2.20). We choose an eigenfunction ~b, corre- 
sponding to an eigenvalue E, of HI0] .  Then a computat ion presented in 
Appendix C gives for/~ small enough 

r - dx IV~v(x)l 2 

+ f dx vo~(x)ir 1 + o(/~ ~/2) (4.10) 

where the effective potential Veff(x) is 

z 1 f a d r f  d ~ V ( x _ r _ z )  v~  = V(x)  1 + z ~2 (4.11) 
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and the effective mass rh(fl) is given by the formula (C.8) in Appendix C. 
Since rh(fl)= 1 + o(1), for/3 small enough we have 

(~, p~r 
1 - , 8  {Ev [1 +o(1) ]  

+ 1 + ~  IAI ~ dr dv I V ( x -  r -  z)l I~(x)I 2 (4.12) 

There exists 2(A) small enough (independent of fl) such that for z<2(A)  
the brace is negative (since E~ < 0) and thus (4.12) is greater than one. This 
proves the existence of eigenvalues for p ~< (5 and ~ small enough; here 

2(A) 1 

1 +~(~ ) I~ l  

Let us also remark that if IAI--' o% Ve~(x) --, V(x), so we have 
2(A)--, oe. On the other hand, if I d ] ~ 0 ,  Ve~(x)-~[1/(l+z)] V(x), so 
that 2([A[ = 0 ) <  z~ for some fixed number z~. 

In the case of the ideal gas model one proceeds in the same way. This 
leads to (4.10) with Ve~(x)= V(x). Thus, in the ideal gas, (4.12) becomes 

X 
- 1 - f l E v [ 1  + o ( 1 ) ]  = e - r + o(1))  ( 4 . 1 3 )  

showing that for small fl there exist bound states for all values of the 
density. 

5. H I G H - D E N S I T Y  L I M I T  

Our analysis of the high-density limit involves the computation of 
functional integrals by the Laplace method. We begin with the ideal gas 
model. 

Ideal Gas Model. To show that there remains an eigenvalue at high 
density, we will use again the variational principle (2.22). This leads to the 
computation of some functional integrals which we first explain. Let f~ be 
the space of (x, e), x e R 3, e a Brownian path such that c~(0) = e( t ) = 0 and 
g(x, ~) a functional from f~ to R. The behavior of the integral I(p) 

I(p)=_ I dx exp[-(x)2/2fl] Ip f dr F(x , (2~fl)3/2 D .  g(x, ~) exp c~)] (5.1) 



934 Lebowitz et  al. 

is given for p sufficiently large by 

I(p)= [ I  +o(1)] g(0, 0)23/2[,,fp K(fl)] ,/2 

x e x p [  - l ~ x / p K ( f l ) ] e x p ( p f d r { e x p [ - f l V ( r ) ]  1 -  }) (5.2) 

wlaere K(fl) is given by (5.8) and F(x, a) is the positive functional (2.12). 
One can see that (x = 0, ~ = 0) is a stationary point of F(x, ~) in the space 
(2. Indeed, the first derivatives are 

VxF(x, ~)= - I  dr/3 f~ dss VV(sx + ~ ~(s ) - r )  

F(x, ~) = -- f dr fl3/z VV(tx + ~ m(t) - r) 6~(t) 

xexp[- f l ;~dsV(sx+xf~o~(s) -r )]  (5.4) 

If we specialize (5.3), (5.4) to (x--O, ~=0),  we get 

(VIF)(O, O)= - ~  drVV(r) e -~v(') 

=~ drV(e -~v( ')-  1)=0 (5.5) 

6 F __fi3/2 ( ~ - ~ ) ( 0 , 0 ) =  f drVV(r)e ~v(') 

= ~ f d r V ( e  ,v , , )  1):0 (5.6) 

Moreover, 

F(0, 0) = f dr (e tiP(r) - -  1 ) 

so by applying Jensen's inequality to the s integral in (2.12) one readily 
concludes that this stationary point is also an absolute maximum for the 



A t o m i c  vs Ionized Sta tes  in M a n y - P a r t i c l e  = Systems 935 

functional. Expanding F(x, c~) around (x = 0, c~ = 0), we find up to second 
order 

F(x, c0 = F(0, 0 ) - ~  [K(J~)'] 2 du all) 

xE6(u-vl-l-lEx/-fic~(u)+ux].Ex/-fi~(v)+vx] (5.7) 

with 

]~2 
[-K(/~)] 2 = 3 -  Y dr IVV(r)I 2 exp[ -/~V(r)] (5.8) 

We now prove that the quadratic form in (5.7) is not degenerate and 
negative definite. 

kemma 5.1. For any (x, c~) ~ f2 not equal to (x = 0, ~ = 0) we have 
the strict inequality 

ProoL First we notice 

f~ dufd dv E~(u- v)-  13E,ffi ~(u) + ux] �9 E,ffi =(~t + ~x3 

{ ;o }2 =~du E , f ~ ( u ) + ~ x ] -  ~ d ~ L ~ ( ~ ) + ~ x ]  />0 (5.10) 

Since the 
vanish if and only if we have 

Brownian paths are continuous, (5.10) implies that (5.9) can 

(5.11) 

for all 0 ~ u ~  1. Specifying (5.11) to u = 0  and u =  1, one sees that x = 0 =  
~ d s  [x/'~ c~(s) + sx]. Thus, by (5.11), a ( u ) = 0  for all 0 ~ < u ~ l .  

Having established that (x = 0, a = 0) is an absolute maximum and a 

,,/-fi ~(u) + ux = foX ds [,j-fi :~(s) + sx] 
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nondegenerate stationary point, it is legitimate to compute the asymptotic 
behavior of I(p) in the Gaussian approximation, 

I ( p ) = [ l + o ( 1 ) ]  g(0,0) e x p ( p f d r  { e x p [ - f l V ( r ) ] - l } )  

exp [- - (x) 2/2fi ] 
X J dx (27cfl13/2 Dc~ 

{ P[K(fl)] 2~lduf0  
1 

dv xexp - ~ Jo 

• (5.121 

The Gaussian integral in (5.12) can be exactly computed, and one obtains 
the result (5.2). The computation is carried out in Appendix D. 

To compute the ratio (2.22), we choose a sufficiently regular function 
~b(x) such that 11~112= 1 and q~ does not vanish on the support of V(x). 
Then 

exp [ - (x) 2/2fl ] 
P f dy ~b(y) f dx D~ ~b(y+ x) (~b, pz~b) N(p, fl) (27r/3) 3/2 

and 

- -  f e x p [ -  (x)2/2fl] P dx D~ exp[pF(x, :0] 
S - N(p, fl) (2rcfl) 3/2 

Using (5.2) for g(x, e) equal to 

and equal to 1, respectively, we obtain 

(5.14) 

If we replace V by xV, where x is a coupling constant, we note that (5.15) 
is still strictly greater than one for any value of the coupling constant. So 
even if ~c is small enough so that - 1A + ~:V has no bound states, we will 

lim (~b, p2~b) f d y  Iq~(y)12e 'v~Y)>l (5.15) 
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have discrete spectrum in P2 at large enough densities. The significance of 
this point was discussed in Section 2. 

We also remark that to derive (5.15) one does not need to compute 
the Gaussian integral in (5.12). However, this computation is useful for 
latter purposes. 

To derive the asymptotic behavior of Z', we still need to compute the 
asymptotic behavior of the normalization factor N(p, fl) as p ~ oe. For this 
quantity one gets a Gaussian integral similar to the one in (5.12). The 
calculations are sketched in Appendix D. 

We now turn to the discussion of the cell model. 

Cell Model. In this paragraph we want to show that the discrete 
spectrum of P2 is empty at high density. We will use the Birman-Schwinger 
operator, as in Section 3, i.e., 

K()~) = Iprl ~/2 ( , ; ~ - - p p l )  -1  IpTI 1/2 (5.16) 

We recall that the edge of the continuous spectrum of P2 is Z=pf i (0) .  
The Birman-Schwinger operator has the following property: P2 has no 
eigenvalues if and only if 

sup IIg()o)ll < 1 (5.17) 
2 > X  

where I[']] denotes the operator norm./17~ To estimate the operator norm, 
one could try to use 111(2)1t ~ IIK(2)]12, where 1i'112 is the Hilbert-Schmidt 
norm, and then make estimates similar to those of Section 3. However, it 
turns out that this does not give sharp enough inequalities. Instead we will 
use the following two lemmas. 

k e m m a  5,2. Let h(x) be the function defined in Section 3, i.e., 
h ( x ) -  1 for Ixl ~< 1, h (x )=  Ixl <3/2+, for Ixl > 1. Then the following 
quantities are finite: 

,no - sup j (5.18) 

m t -= sup f 
y 

m2 = SUPx { 

dy Ipr(x, Y)I = sup f dx lOt(x, Y)I 
y 

dx [h(x)] -a lPr(X, Y)t 

[h(x)] 2 f d y l p r ( x , y ) , }  

Lemma 5.3. One has the inequality 

max(m1, m2) f dk p/51(k) 
sup IIg(2)ll ~ < ~ +  Ilhll 2 _r Z ' - p ~ l ( k  ) 
2 > X  

(5.19) 

(5.20) 

(5.21) 



938 Lebowitz et  al. 

We do not give the details of the proof of Lemma 5.2, which is based on 
the bound (3.7) for pr(X, y). Here we give the proof of Lemma 5.3. 

Proof of l_emma 5.3. First we make the decomposition 

g(2)  =/~-1 [Pr] + IPTI 1/2 s(,~) IPTI 1/2 (5.22) 

where S (2 )=  ()~-ppl) - 1 - 2  -1, as in (3.27). Then 

HK(2)II ~<2 1NprH + II LPTtl/2s()~) Iprlt/211 (5.23) 

and since Ilprll ~<mo 

IIK(;~)II ~ - ~ +  sup II Iprl '/2 S()~)Ip~l 1/211 sup (5.24) 
2>X 2>X 

Now it remains to estimate the second term on the right-hand side of 
(5.24). We remark that S(2) is a positive self-adjoint operator, so 

[I IPT[1/2 S(2) 1PT[1/211 = II(IPTI1/2 [-S(~)]1/2)([S(~)11/2 IPT[ 1/2)[I 

~< II(Iprl 1/2 [S()~)]l/2)(ipTi 1/2 [-S(}~)] 1/2)+ 112 

= II(Ip~ll/2 [s(,~)31/2) + (Iprl  1/2 [s(,t)31/2)112 

= II [s( ,~)]  1/2 hh-1 Iprl h-1h[S(2)]l/2112 

~< II h-1 IPrl h 111. II[S(,~jll/2hH~ (5.25) 

where h denotes the multiplication operator by the function h(x). Since Pl 
is the multiplication operator by #l(k) (see Section 3) we have 

p~l(k) ]~(k_k,) l  2 (5.26) II I-S(;J] 1/2 h ll~ = f dk f dk' 
2[2 p/~l(k)] 

where h denotes the Fourier transform of the function h(x). Evidently h is 
square integrable. Thus, using (3.31), it is clear from (5.26) that 

sup II(S(;J) 1/2 hH~=If dk Ih(k)[2] ~ dk p#l(k)  (5.27) 
) . > s  3 S[X-p#1(k) ]  

To obtain (5.21), it remains to prove 

llh -I  IPrl h-il l  ~< max(ml,  m2) (5.28) 



A t o m i c  vs Ion ized S ta tes  in Many-Particle Systems 939 

For given ~b, CeL2(R3), 11~/12= 114`112 = 1, we define the function of the 
complex variable ~, 

f ~ . ~ ( ~ ) = f d x f d y r  2(1-~) 4`(y) (5.29) 

We will show later that F~,~(ff) is analytic and bounded for ( in the strip 
{(10 < Re ( < 1 }. Thus, by the Hadamard three-line lemma ~I8) 

lEe, e(()] ~< [Fr Rr tFr 1-Rer (5.30) 

for ( in the strip. Applying (5.30) to ( =  1/2 gives 

(r h-1 IPTI h-14`) << . I(~, Ip~t h 24`)11/2 I (~ ,h  2 IpTI 4`)t '/2 

~< II~bl[2 [I Iprl h-24`ll~/2 [I h-2 IPT] 4`111/2 

~< I] [PTI h-2l] 1/2 IIh 2 [PT] 111/2 

= [IPTh 2111/2 ]lh-2pTll 1/2 (5.31) 

For the second inequality in (5.31) we used the Schwartz inequality, for the 
third the fact that 11~112 = 114'112 = 1, and the last one follows from the polar 
decomposition of Pr. Since (5.31) is valid for any normalized ~b, we choose 
~b = (h l lPT[ h-14`)/llh -1 Iprl h-101t ,  which gives 

II h-1 IPTI h 14`112-..< IIPT h 2111/2 IIh-2prll 1/2 (5.32) 

Finally, we deduce (5.28) thanks to the operator norm estimates 

I]pTh 2]] ~< Max(m1, m2), IPh 2,or[] ~< Max(m1, m2) (5.33) 

We conclude the proof of this lemma by showing that Fr is analytic 
and bounded in the strip {~10 < Re ~ < 1}. Since h(x) is strictly positive, 
the integrand of (5.29) is analytic in the strip for each fixed x and y. Let 
Re ~ = t; then by the Schwartz inequality 

(5.34) 

In the estimate (5.34) we recognize the convex function (3.22). Thus, 

IF~,o(()l ~< ll~ll2 114̀112 {f  dx f dy [h(x)]  4 [ , p T l ( X  , y)]2} 1/2 

= 11~112 114̀112 I[h -2 IPr1112 = I]~ll2 114̀112 Ilh-2prll2 (5.35) 

822/67/5-6-7 
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As argued after (3.22), this is finite. Therefore the integral (5.29) is 
uniformly convergent, implying that F~,o(~) is analytic and bounded in the 
strip 0 ~< Re ~ ~< 1. 

Now we can apply Lemma 5.3 to show that at high density (5.17) 
holds for the cell model, and thus there are no eigenvalues. For this we 
compute the two terms on the right-hand side of inequality (5.21) and 
show that they tend to zero as the density tends to infinity. We recall that 
the density is 

z 1 
P = I + z l A ~  (IAI =a3)  

We will be interested in the limit where z/(1 +z) is sufficiently close to 1 
and I AI=  a 3 is sufficiently small. 

Estimate of the First Term of the r.h.s, of (5.21). Estimating the 
bracket in (2.11) simply by A(fl)(z -1 + a) [A(fl) = Afle ~ sup Ivl; see (3.9)], 
and using the translation invariance, we deduce 

fdylPT(X,y) l<A(f i ) (z  P e x p [ -  (Y)2/2fl] 1 ~ f d y  f D a - -  
1 -[- a )  

(2~fl) 3/2 IAI 

l+a) (5.36) 

Thus we have obtained (mo/X)<<.A(fl)(z l + a ) ,  which can be made 
arbitrarily small for large z and small a. 

The estimation of max(m1, m2)/~ and of t~l(k) is more complicated; it 
requires the computation of functional integrals by the Laplace method. 

Estimate of the Second Term of the r.h.s, of (5.21). All the quan- 
tities of interest will involve the integrals over (27gfl)-3/2e x2/2fldx De of 
the exponential of the functional 

q, o(0, x, 
J 

( z;o =~ln. l + i ~  z dr 
J 

x { e x p [ - f l I ] d s V ( s x + x ~ f i a ( s ) - j a - r a - z a ) ] - l } )  (5.37) 
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where Q is the unit cube Q = {xi ]xnl ~< 1/2, n = 1, 2, 3}. For a given size of 
the cells a, we take z sufficiently large such that 1/(1 + z ) =  O(a3), as stated 
in III. One can perform a Taylor expansion for small a with respect to 
ra + za (here r e Q) and 1/(1 + z). Then we approximate the sums over j by 
Riemann integrals. Carrying out these calculations (see Appendix E) leads 
to the result 

~Cj,~o(0, x , e ) = - ~ - 3  dr V(r)+-~aG(X,~)+O(1) 
J 

(5.38) 

where 

G(x, ~ )=  f dr f2 ds VV(sx + x/-fl 7 ( s ) -  r) 2 (5.39) 

and O(1) is a functional depending on x, e, a, and z which is uniformly 
bounded with respect to all its arguments as z 1 = O(a  3) and a ~ 0. Thus, 
there exist constants C1 and C2 such that 

12 

~< exp I ~  Ci.,a(0, x, e) ] 

(5.40) 

In view of (5.40) we have to find the asymptotic behavior of functional 
integrals analogous to (5.1) with pF(x, c~) replaced by (flz/24a) G(x, e). 

By Schwartz's inequality applied to the s integral in (5.39) we find 
that G(x, ~)~<G(0, 0 ) = ~ d r  [VV(r)[ 2. Thus ( x = 0 ,  ~ = 0 )  is an absolute 
maximum in the space (2. Moreover, it is easy to check that it is also a 
stationary point. Thus we expand G(x, c~) up to quadratic order around 
this stationary point and find the same quadratic form as (5.7) with 
[K(fl)] 2 replaced by 

i 3 2 

3 i=1 
(5.41) 
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We recall that 

= p ~ dx p(x, O) S d 
P f dx exp[ - (xff/2] N(p, fl) (2g)3/2 D e  

x fQ dr exp [ ~  Ci,~a(O, x/-fi x, e) 1 (5.44) 

942 

Thus we have a formula analogous to (5.2), namely 
exp[ - (x )2 /2f l ]  /~2 J(a)=-f dx Deg(x, e) exp [2--~a G(x, e) 1 (2gfl) 3/2 

= [,1 + o(1)1 g(0, 0)exp [2--~a f dr IVV(r)l 2] 

x f dx exp[ ' -  (x)2/2fl] De 
(2~/~) ~/2 

/~2 , 1 
xexp - 2~a [ 'm(/~)]2f 0 dH fo du 

x [-a(u- v ) -  a][,x/-fie(u)+ux][,x/fle(v)+vx] } 
= [,1 + o(1)] g(O, O)2 3/2 ( 2(3a)1/2 ~1/2 

• exp ( 
fl3/2 W(fl!'~ 
4(3a),/2jexp[~afdrlVV(r)t2] (5.42) 

Now we can readily estimate max(m~, m2)/S. For this we use the 
inequality (3.9) and the translation invariance 

ml = sup ~ dx [h(x)] ~ 2 Ipr(y, X)] 
Y , 3  

dx [h (x+y) ] -2  IPr(Y, x+y)]  sup 
y d 

<<.A(fl)(z-~+a) ~ P  sup 3~ dx exp[- - (x)2/2/~] De 
y (2rCfl) 3/2 

•  2 ds[l+ly+sx+xf#e(s)l ] ~/2 

x ~ dr exp [ ~  Ci,~a(O, x, e)] (5.43) 
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In both (5.43) and (5.44), we replace the functional (5.37) by its continuous 
approximation (5.38) and use the asymptotic form of the integrals (5.42) 
with the suitable functions g. We get 

m1< C2 A(fl)(z -1 + a)[-1 + o(1)] sup(]h(y)1-2 (1 + [yl 2) ,/2) 
C1 

B(fl)(Z -1 2i- a) (5.45) 

where B(fl) is finite, since we have h ( y ) - 2 =  O([yl 3) and r/> 3. Proceeding 
in the same way, one finds also that m2/S= O(z -1 +a). 

Now it remains to compute pfil(k)/S. We use again the continuous 
approximation (5.38) and the Gaussian approximation (5.42), 

pc51(k) = j" dx [e-(X)2/2"o/(27cfl) 3/2] De e ikx ~ dr exp[52 i Cj,~(0, x, e)] 

~ (IX [e-(X)e/2B/(27zfl) 3/2] D~ ~3 dr exp[~] i Cj,,(0, x, e)]  

= [1 + o(1 )] ~ dx [e -(x)2/2~/(2rcfl)3/2] De eik" exp [ -- (f12/24a) G(x, e)]  
dx [e-(X)2/2B/(2xfl) 3/2] De exp[--  (f12/24a) G(x, e)]  

( 2 ( 3 a )  1/2 ) 
= [1 +o(1) ]  exp x/-~ W(p) Ikla (5.46) 

Note that here we cannot replace e iux by 1, because this would not give the 
correct behavior for Ikl ~ +0% which we need below. The computation of 
this Gaussian integral can be performed exactly and is explained in 
Appendix D. With (5.46) we find for small a 

P'fl(k) = O(a 3/4) (5.47) 
f dk Z~- p/51(k ) 

Finally, gathering (5.47) and (5.45) for m J X  and rn2/X and (5.21), we 
obtain (5.17) for z large enough and a small enough. We recall that the 
result is valid for 1/(1 + z ) <  Ca 3. 

APPENDIX A. DERIVATION OF (2.7)- (2.10)  

We sketch the derivation of the thermodynamic limit for the cell 
model. For the ideal gas and lattice models the arguments are simllar, 
Using formulas (2.5) and (2.6), we can write the partition function of the 
cell model explicitly, 
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~-~a = (2~/~) 3/2 dx D~ 1 dz ZA(~xx) 
n = 0  ' ' , - ,  

x I ~  dr ~-~~)G(r- j i a -  z) 
i=1  

=(2rcfl)-3/2 f dx f D~Al f dzzA(~x~) 

xi~L{l+Z;Adr~Alz~(r--ja--r) 

x exp [ - - f l  f]  dsV(x+,,/flc~(s)-r);} (A.1) 

~Jn 

We choose a sequence of domains consisting of N cells, IAI=NIAL, 
N ~  oc. If we set V ( r ) = 0  in (A.1), we find the partition function of the 
classical fluid without the quantum particle: (1 + z) N. Thus the density is 

1 ~ 1 z (A.2) p=-~lz ln(1 +z) N IAI 1 + z  

We can compute the thermodynamic limit of the ratio of (A.1) with the 
partition function of the classical gas 

lim ~A 
IAI IAl( l  + z) u 

1 =(27zfl)-3/2 f D~l  f dr 

xexp In + 1 + z  I AI 

x; drexpI-flf~dsV(x+,~/-fl~(s)-ja-z-r)l} ) (A.3) 

This is exactly the same as (2.9). In order to obtain (2.7) and (2.8) we 
divide the numerator and the denominator of (2.3) and (2.4) by (1 +z) u. 
The term corresponding to the denominator yields the normalization factor 
(2.9). Then one computes the thermodynamic limit of the term corre- 
sponding to the numerator. We sketch this computation for the case of 
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the pair density matrix only. The modifications for the one-particle density 
matrix are obvious. We have 

~ = o ~  " dr1--, dr,  G,+ ~(0, rl,..., r~) 

• exp(--flHA [0, rl,..., r . ] )(x,  y) 

exp[ -- (x -- y)2/2fl] 1 
= (27z/~)3/2 focz-~]fdzzA(~xy) 

~ z" l I_~;jdsV(c~xr(s)) ] 

• ~ dr ~-~ x . ( r - j i a -  T) 
O ~ j t ~  " '-  ~ J n  i = l  

• I--/ fo dsV(Txy(S)-r)]} 
e x p [ -  (x - y)2/2/?] f Dc~ 1 

x ~ exp 

j ~ L/{O} 

1 exp[- -  (x -- y)2/2fi] 1 

• f/ as (A.4) 

Using (A.3) and (A.4), we get the formula (2.8) for the thermodynamic 
limit. 
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To check that the density matrices are translation invariant, one 
can use 

and 

Ci,,(x + Xo, y + Xo, e) = ~ C i . . . .  0(x, y, e) 
J J 

(A.5) 

dr exp E CJ,* x0(x, Y, e) = [--~ Ja dz exp Z Cj,,(x, Y, e) 
J J 

(A.6) 

Formula (A.6) follows from the periodicity of the integrand considered as 
a function of ~, 

APPENDIX  B. PROOF OF (3.15)  

We differentiate (2.11) with respect to the components of the vector x 
and make the following observations. 

(i) According to (2.10) and (3.2), one finds that the first and second 
derivatives of ~ iCi .~(x ,y ,e )  are bounded by Cst~dx [VV(x)[ and 
Cst ~ dx IAV(x)I uniformly with respect to all the arguments. 

(ii) In view of (2.2), the derivatives of the large bracket in (2.11) are 
majorized by 

1 

Cst fods [1 + I%y(s)l 2] -7/2 

Derivatives of the Gaussian e x p ( - I x - y l 2 / 2 f l )  have Gaussian (iii) 
bounds. 

Thus there exist constants C 1 and C2 such that Apt(x,  y) has a bound 
similar to (3.7), 

IAxpr(x,y)l<~Clexp(-C2lx-yl2)fDefl ds[l+lexy(S)[2]-~/2 (B.1) 

Using (B.1) and (3.7) together with the Schwartz inequality for the 
normalized measure De ds, we obtain 

I ( - A ~ +  1)pr(x ,  y)l 2 

~< 2[-IAxPT(X, y)12+ IPT(X, y)l 2] 

1 

<..C'~exp(-C'2lx-yl2) fDefo ds[l+lexy(S)12] -~/2 (B.2) 
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With our choice of h(x), we have Ih(x)l 24 1 + Ixl3+2~; thus, 

f dx f dy Ih(x)t-2 I(-Ax + 1) pr(x, y)l 2 

<.el fD:,f] dsfdxfdyexp(-C'2y2) I 1 + I~xy(S)13§ (B.3) 
(1 + Ix[2) "/2 J 

Since t /> 6, this last integral is finite provided that g is Small enough. 

A P P E N D I X  C. P R O O F  OF (4 .10 )  

In this appendix we prove (4.10)-(4.11). Let ~b be three times differen- 
tiable with bounded derivatives, and ~b~LI(R3). We have the Taylor 
expansions 

1 ~b(x-t-xffly)=d?(x)-I-~-fly.V~(x)-I-~fl(y.V)2 r 3) (C.1) 

exp{-~f~dsV(x+x/-fi[sY+c~(s)])} 

= 1 -/~V(x) + fi3/20(lYl + sup I~(s)l) (C.2) 
s 

Let us compute the ratio (2.22) with the aid of the Taylor expansions 
(C.1) and (C.2). To this end we set 

(2~z)3/2 fD:,- fa exp y, 0, 

Using (3.2) [with v(/~) = O(fl)], one checks by dominated convergence that 
X" = 1 + o(1 ) for small/~. We have 

(~b, p2~b) 1 e x p [ -  (y)2/2] 
_~ r,,fax4(x)faY (2r03/2 / D~ ~b(x + x/-flY) 

• IA~ dzexp -fl dx V(x+xf-fiEsy+c~(s)] ) 
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= S"31 I dx ~b(x) [~b(x) + x ~  Y' Vqi(x) 

+ ~ /3(Y" V)2 fb(x)- fiV(x) ~(x)] 

exp[-  (y)2/2] 1 

x e x p [ ~  Cj,~(x-{-x/-fJy, x,o:)]+O(/3 3/2) (C.4) 
j~0 

where the term 0(/3 3/2 ) comes from contributions involving the remainders 
in the Taylor expansions in (C.1), (C.2). One checks that these contribu- 
tions are indeed of order fl3/2 with the help of (3.2) and ~ I~(x)l < oo. Let 
us also note that 

expEr0   (x+ Y" 1 
J 

= {exp [~  Cj,~(x + xffl Y, x, c~)]} 

z l  {exp x (1 +--~z I ~ l  fa dr [-/3 fods 1})- '  

-- 1 - / 3 1 + z l 5 1  drr(x-r-z)+/33/20(lYl+supla(s)[)s 

x exp [~  Ci,~(x + x/fi y, x, e) 1 (C.5) 
~-j 

We insert (C.5) in (C.4), keeping explicitly all the contributions up to 
order fl, 

S 
1 Ir + ~ y" V~b(x) S,, f dx f dy ~(x) 

1 ~b(x)] + ~ fl(y-V) 2 r - flV(x) 

exp[-  (y)2/2] 1 I~  ] 
• (2TC)3/2 f D~ [-~ f~ dr exp Ci, z(x/-fl y, O, o~) 



Atomic vs Ionized States in Many-Particle Systems 949 

1 z f d  x i~(x)l 2 1 

• f dy (2rr)3/2 f Oeexp Cj,,(x + x//fl y, x, ~) 

-[- O(fl 3/2 ) (C.6) 

Note that we have used (A.5)-(A.6). This is important because now we can 
exploit the symmetries of the cubic lattice to obtain 

1 f dx ~(x) ~ (x ) - /~  f dx I~(x)l~ V(x) - - - 1 + / ~  

+ fl f dx I~(x)l 2 V~(x) + O(fl 3/2) (C.7) 

with 

1 e x p [ -  (y)2/2] 1 
rh(fl) = ~;; f dy lYl 2 (2/.c)3/2 De [A--~ 

x f  drexpI~Ci , , (x/ f lY,  0, c~) ] 

z l f A f ~  1 r~ (x ) - l+z lA i  2 dv d r V ( x - r - r ) ~ - ;  

(2~z)3/2 f Dc~ exp Cj.~(x + ~ y, x, c~) 

(c.8) 

(C.9) 

It is easy to show that 

l + z l d l  2 d~ d r V ( x - r - v ) - V ~ ( x )  =o(1) (C, lO) 

From (C.7) and (C.10) we deduce 

(0, p2~b ) 
/3 1 2 + f dx Iq~(x)l § o(fl ~/=) 

(c.11) 

where V e~ is given by (4.11). 
The eigenfunctions ~bv of HI0]  have an exponential decay, (16) so they 
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belong to LI(R3), and they have the required differentiability properties as 
a consequence of the smoothness of the potential (2.2). Thus, (C.11) holds 
for ~b = ~b~. 

APPENDIX D. GAUSSIAN INTEGRALS 

First, we show how to compute the general Gaussian integral 

~dx exp[-(x)2/2/?] De exp(ikx)exp ~ -  72 ~t du 11 dv HT(k) J (2~/~) 3/2 ~ 2/~ Jo Jo 

• [6(u-  ~ ) -  1] [ , f~  ~(u) + , x ] .  [,j-/~ ~(~) + vx]} (D.1) 

where 7 is a dimensionless parameter. It is convenient to define the 
normalized Gaussian measure 

exp{-�89 [ 6 (u - v ) -  1] e(u). e(v)} (D.2) 

The normalization factor is equal to I-(2/7) sinh(7/2)] 1 (see, for example, 
ref. 13). Since the covariance of the Brownian bridge is the inverse of 
-d2/ds 2 on [0, 1] with Dirichlet boundary conditions, the covariance 
C~(s, t) of the measure (D.2) is the solution of 

ds2C~(s,t)+y 2 C,~(slt)- dsC~(s,t) = 3 ( s - t )  (D.3) 

with s, t~ [0, 1], C~(s, t) = CT(t, s), C~(0, t )= C7(1, t) =0. One can check 
that 

-1 1 [cosh 7 ( I s -  tl - ~ )  + cosh 2 C~(s, t )=(2sinh2)  - ~ 

-- cosh ~ ( t -  ~) - cosh ~ ( s - ~ ) ]  (D.4) 

We will also need the formulas 

~2 1 ~(U)" X] 
f D ~ e x p [ - - ~ ;  o du(2u-1)x/-# 

=exp ~-~o Ix] 2 du dv(2u-1)(2v-1)C~(u,v) (D.5) 
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and 

f l  fd 1 2 7 4 du dv(2u-1)(2v-1)C,/(u,v)=---~scoth372 ~ + ~  

With the help of (D.5) and (D.6) the integral (D.1 
follows: 

Thus 

(D.6) 

can be computed as 

H~.(k)=@sinh2)-l f dxeXp[-(x)Z/2fl] exp( ikx 3/2 

= ( ~ s i n h 2 )  1 1 'x12 7 7 (2~t~)3/2fdxexp(ikx)expl--~-fl-(~coth-~] 

H~(k) = @ sinh 2) -1 (coth 2 ) -  3/2 exp [ - fl ~--~ (~ tanh 2 ) ]  (D.8) 

The asymptotic behavior for 7 --* ~ is 

HT(k) ~ 23/27-1/2e-~/2e ~ Ikl2/7 (D.9) 

Appfication to (5.2), (5.42), and (5.46). To obtain (5.2), we set 

Ikl=0 and 7 = x / ~ K ( f l )  in (D.9). For (5.42) we set Ikl=0 and 
7 = f13/2W(fl)/2(3a) 1/2. For this last value of 7 the ratio in (5.46) is exactly 
H 7 ( k)/H~ (0) ,,, exp ( --/Y { k[ 2/7 ). 

Appfication to Z for the Ideal and Cell Models. For the ideal gas 

model we need to compute the asymptotic behavior of the normalization 
factor [see (2.9) and (2.12)] 

N(p, fl) = (2~fl) 3/2 f D~ 

(D.10) 
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Applying the Laplace method to (D.10) as in (5.1)-(5.12), it is easy to see 
that the asymptotic behavior for p ~ oo is given by 

N(p, fl)...(2rcfl)-3/2exp(p f dr {exp[ - f lV( r ) -  1 }) 

x f Dc~ exp { -  @ [K(fl)]2 I] du f/dv [ 6 ( u - v ) - 1 ]  ~(u)-e,v)} 

(D.11) 

The Gaussian integral in (D.11) is simply the normalization factor of (D.2). 
Thus for p ~ oe 

N(R, fl) ~ (2gfl) 3/2 (fiR)l~2 K(fl) exp I (flp)1/22 K(fl)] 

x exp (p f dr {exp[-flV(r)] - l } ) (D.12) 

Finally we find from (5.2) with g = 1 and (D.12) 

I(p ) = 0(pl/4 ) (D.13) Z" = p ( j dx p,(x, 0) = p N(p, 

For the cell model we need the asymptotic behavior of N(p, fl) given 
by (2.9). Repeating a similar analysis to that of Section 5, one finds as 
a ---~ oo 

F / 2id r 2] f dr r(r) + [Vr(r)l N(p, fl)~ exp L -  a--g 2Ta 

]~3/2 W(]~) f ~3/2 W(]~)~ 
exp ~ 4(3a)1/2 / 

xexp - - - f d r  V(r)+ fdr  [VV(r)I 2 (D.14) a 3 

Finally we find from (5.38), (5.42), and (D.14) 

Z" = p f dx p~(x, 0) = O(p 3/4) (D.15) 
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A P P E N D I X  E. D E R I V A T I O N  OF ( 5 . 3 8 ) - ( 5 . 3 9 )  

Setting coi(s)=sx + x/fl ~ ( s ) - j a ,  a limited Taylor expansion with 
respect to (r + r )a  up to order a 2 gives 

I~ ds V(~j(s)- + z)a) (r 

f = Jo ds V(o)j(s)) - a(r + r)m ds (~m V)(c~i(s)) 
a2 f] 

+-~- (r + z)m (r + r)n ds(c~nV)(o.)i(s))+a3R(~oj(s),ra+ra) 

(E.1) 

with summation on repeated indices m, n -- 1, 2, 3. 
In view of the assumptions (2.2), the remainder in (E.1) is of order 

R(mi(s),ra+ra)=O(f]ds [ 1 +  t(Dj(S)' 2] ,~/2) (E.2) 

uniformly with respect to r, ~, and a (r, z~ Q, a small). Expanding the 
exponential in (5.37) gives 

fQdrexp[-flf:dsV(wi(s)-(r+')a)] 

1 Zmrn)[~2 1 fodt 

with a remainder, again denoted R, which satisfies the same estimates 
(E.2). We have used 

1 
IQdrr~  =o,  fQdrrmr.=T~6m. 

It is easy to see that the argument of the logarithm (5.37) can also be 
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written in the form (E.3) with another remainder still satisfying (E.2). 
Indeed, writing [1 + A] for the bracket in (E.3), this argument equals 

exp[-flf~dsV(%(s))l((l+l@zA ) 

{ E f~ ]}) 
1 1 - exp fl ds V(%(s)) (E.4) 

l + z  

With (2.2) and 1/(1 + z ) =  O(a3), the last term in (E.4) has a bound as in 
(E.2), so that (E.4) has the form (E.3). 

Expanding now the logarithm of (E.3) gives 

C>~(O, x, ~) 
J 

= - fl ds ~ V(cnj(s)) + flaVm ds 2 (~?m V)(%(s)) 
J J 

-~ f la  2 amn+~m~, dS 2 (e~~ V)(%(S)) 
J 

f12a2 fO 2 + -~-- ~ ds (VV)(coj(s)) +a3~R(coj(s)ra+za) 
J 

(E.5) 

where the remainder R satisfies (E.2). 
It remains to approximate the lattice sums by the corresponding 

integrals. For this we use the Poisson summation formula for a smooth 
q~(x) having the properties (2.2), i.e., 

j j j :~O 

= a  3 f dx ~ ( x ) +  O(1) (E.6) 

If q~(x) is four times continuously differentiable with integrable derivatives, 
~(k) = O(1/[kl 4) for large k and thus 

j ~ : o  j 

leading to (E.6). 
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If y is a fixed vector, we have the same result for the translates 
�9 (x+ y) and eik'y$(k), i.e., 

~(ja + y) = a -3 f dx ~(X) + O(i) (E.7) 
J 

uniformly with respect to y. 
We apply (E.7) to the terms of (E.5) with y=sx+x/f lc~(s  ). The 

assumption (2.2) implies that (E.7) holds for V, ~m V, and ~?2m, , V (this is 
where we need V six times differentiable). The first and fourth terms in the 
r.h.s, of (E.5) give (5.38). Since ~ dr ~?m V(r) = ~ dr O2m, V(r) = 0, the second 
and third terms are, respectively, O(a) and O(a2).  By (E.2) the last term is 

a30(f]ds~ [1+ I~j(s)l~] -~/~) 
J 

= O ( f  d x ( l ~ t r l  2) ~ / 2 ) - t - 0 ( a 3 ) = 0 ( 1 )  (E.8) 

uniformly with respect to all arguments. This proves (5.38). 
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